Monday, July 29, 2013

Medicowesome Flashcards 1 download

Hey everyone!
The first set of flashcards are ready for download B)

I sorted them out in different folders in case you wish to study them separately ^_^
Personally, I like mixing them all together and recollecting random facts as they show up.. Gets tougher =D

Wednesday, July 24, 2013

Medicowesome flashcards

Hello!

I've been making flash cards for myself.
I've made them as images so that I can put it in my cellphone or tab and revise them while I'm traveling ^_^

Wednesday, July 3, 2013

Friday, June 14, 2013

Emoticon game on Microbiology

Hi everyone!

We will be doing something different and fun today ^___^
We are playing the emoticon game.. Difference is that it's on Microbiology!

Tuesday, June 11, 2013

Sunday, May 12, 2013

Oxygen - hemoglobin dissociation curve mnemonic

Hi everyone!
What is oxygen - haemoglobin dissociation curve or oxygen binding curve?
The oxygen - haemoglobin dissociation curve plots the proportion of haemoglobin in its saturated form on the vertical axis (fractional saturation of hemoglobin) against the prevailing oxygen tension on the horizontal axis.

What does it tell?
It tells you the affinity of hemoglobin for oxygen.

How does it do that?
It's simple!
If the curve shifts towards the right, hemoglobin has decreased affinity for oxygen.
If the curve shifts towards the left, hemoglobin has increased affinity for oxygen.

How do I remember the shift in curves?
Remember: Left shifted curve doesn't want to leave oxygen.

Friday, May 3, 2013

Obstructive and restrictive lung diseases

Happy friday everyone!
We’ll learn about obstructive and restrictive lung diseases today.
This is just a short summary for a quick review :)


Obstructive lung diseases - Characterized by airway obstruction.
You have an obstruction in air flow resulting in air trapping in the lungs.
Increased compliance: Due to the loss of alveolar and elastic tissue.
You have a problem getting air out of your lungs.
Mnemonic: Obstructive Out

They breathe like “poof poooooof”
In and oooooout
They take infinity to get it all out =P
So, FEV1 / FVC is decreased.

TLC and RV increased - Flow volume loop shifts towards left.

Examples: Any pathology that decreases the ability to develop a positive intrapleural pressure.
(Airways close prematurely at high lung volumes!)
Chronic bronchitis
Asthma
Bronchiectasis
Emphysema
COPD

Restrictive lung diseases - Characterized by restriction of lung expansion.
You have a problem getting air into your lungs.
Reduced compliance: Lungs become fibrotic, lose their distensibility and become stiffer.
Mnemonic: Restrictive Reduced compliance

They breathe like “poof pof”
In and out
They get everything out in one second =P
So, FEV1 / FVC is increased.

TLC and RV decreased - Flow volume loop shifts towards the right.

Examples: Any pathology that decreases the ability to develop a negative intrapleural pressure.
Pulmonary fibrosis
Asbestosis
Sarcoidosis
Pneumoconioses
Kyphoscoliosis
ARDS
Polio
Obesity

That's all!

I know you must've found the "poof" sounds pretty weird because that isn't the way you breathe
But they are a funny and they help me remember so I put it up anyway ^___^"
Just like "lup dubb" are official sounds for heart beats.. Which sounds would you assign to inspiration and expiration?

-IkaN

Updated: Diagram on 28th Nov, 2013.

Sunday, April 28, 2013

What are the factors affecting diastolic blood pressure?

Hi everyone!

What is diastolic blood pressure?
It is the pressure that is exerted on the walls of the various arteries around the body in between heart beats when the heart is relaxed.
It is the minimum pressure in the entire cardiac cycle.
So it basically represents amount of blood in arterial system during diastole.

Monday, April 22, 2013

Lateral medullary syndrome and lateral pontine syndrome mnemonic

*Super super excited to share this mnemonic with you* ^__^
 But let's get to the basics first!

What is lateral medullary syndrome?
Neurological symptoms due to injury to lateral part of the medulla.
Also called Wallenberg's syndrome.

When does it happen?
When the posterior inferior cerebellar artery is occluded.

What is lateral pontine syndrome?
Neurological symptoms due to injury to lateral part of the pons.

When does it happen?
When the anterior inferior cerebellar artery is occluded.

Wednesday, April 17, 2013

Free water clearance

Hi everyone!
This is my attempt of explaining everything I know about free water clearance.. Hope you understand :)

What is free water clearance?
Free water clearance (CH2O) is the volume of blood plasma that is cleared of solute-free water per unit time.

What does it mean? @_@
Water follows salt everywhere it goes.
[Think of salt and water as a lovey dovey couple, in a very codependent relationship of course, water being the lead role xP ]

Tuesday, April 16, 2013

Virus mnemonic

Do you know viruses have various shapes?
The simple viruses are either icosahedral or helical.

Cool and important fact:
Icosahedral viruses can either be simply a naked caspid virus or it can be an enveloped caspid virus.
But if a virus is helical, it HAS to be enveloped and surrounded by a nice lipid bilayer (mostly derived from the host cell membrane)

How I remember that helical viruses are always enveloped is:
Think of our DNA!
We have a helical structure.. So the helical viruses can not survive without our cell membranes.
Helical virus forms can not be naked.

I know it's stupid but it makes life easy for me < 3

If you want to stuff your hippocampus with some other facts:

Sunday, April 14, 2013

Nervous system origins mnemonic

Hello everyone :)
Let's get to CNS and PNS origins =D

Neural crest derivatives:
Neural creSt cells have S
Schwann cells have S
Sensory neurons have S
How I remember that neural crest cells give rise to post ganglionic autonomic neurons is that I remember adrenal medulla is derived from neural crest cells which is as good as a post ganglionic neuron!

Note: The cells that give rise to the adrenal medulla are called chromaffin cells.

Mesoderm gives rise to Microglia which are Macrophages of the CNS

Saturday, April 13, 2013

Inactivated sodium channels and Lidocaine (Lignocaine)

Why is lidocaine preferred in patients with arrhythmias following myocardial infarction?

Hypoxic tissue is depolarized.
Na+ - K+ ATPase doesn't work.
Na+ has accumulated in the cell and no one pumps it out.
All the sodium channels are in the inactivated state.

These inactivated channels slow the conduction of electrical activity in ischemic tissue.
This is how arrhythmia arises.
It causes disparity in the way action potentials are propagated in the heart  muscle cells.
The normal fibres wanting to go fast and the hypoxic tissues slowly firing in between :|

That's why you use class Ib antiarrhythmic, lidocaine, in patients with arrhythmias following myocardial infarction.
They block inactivated sodium channels.

Blocking inactivated sodium channels doesn't change any flux of sodium into the cells.
But if you are keeping it inactive, you are preventing it's return back to the resting state.
So you are keeping those cells in hypoxic tissue refractory, keeping them from going back to resting and preventing them in firing new action potentials on their own.

Lidocaine also decreases action potential duration by blocking slow sodium window channels.
In any other healthy cell, this would be proarrhythmic.
But in hypoxic tissue over here, which is already slow in conduction, you'd help it recover faster and help it go back with the healthy tissue for electrical speed.
Or simply by decreasing APD, you'll have more time in disatole for filling.
Either way, you are improving the cardiac output of the ischemic heart :)

Since digoxin is also going to depolarize the heart by blocking sodium channels, lidocaine is also used in digitalis toxicity.

Cool fact:
Lidocaine is also a local anesthetic.
However, preparations for cardiac use contain no preservatives.
Local anaesthetic preparartions should not be used for cardiac purposes.
It is used i.v. due to high first pass metabolism.

Another cool fact:
Mexiletine and Tocainide are lidocaine like drugs and are available in oral formulations.

That's all for today!
 Have a happy healthy Saturday <3
-IkaN

Cardiac fast fibers and slow fibers - Why does a less negative membrane potential convert a normally fast fiber into a slow fiber?

Greetings everyone! :)

What are fast fibers?
Fast fibers have functioning fast channels.
Fast fibers include ventricular fibers, atrial fibers and Purkinje fibers.

What are fast channels?
They are sodium channels that quickly open and close on depolarization.
  
What are slow fibers?
SA node and AV node.
They lack functioning fast channels.
That's why depolarization is so slow in them.

So what will happen if fast fibers lose their fast sodium channels?
They'll convert into slow fibers!

When does this happen? @_@
When the resting membrane potential is less negative.

Why does this happen?
Less negative potential inactivates sodium channels.
Repolarization is necessary for returning the sodium channels to the ready state.

So.. what will depolarize a slow fiber?
L type Calcium channels! =D
Also known as slow channels.
They allow sodium to pass as well.
It's known as the sodium window current.
So you can appropriately call em slow calcium sodium channels.

Other ways of saying the same thing but worth noting:
Capacity of a cell to depolarize depends on the number of sodium channels in ready state.
The more negative resting potential, the faster the response.
(-90mV in atrial and ventricular cells, compared to -60mV in pacemaker cells)
Slow response fibers have no appreciable Na+ current during phase 0 in these cells because the Na channels are either absent or in an inactivate form because of the existing voltage (-60mV, remember?)

That's all!
^______^
-IkaN