Thursday, April 9, 2020

COVID-19: Lymphopenia and pneumonia

Hello everyone!

In the context of COVID-19, we will talk about two specific terms: Lymphopenia and Pneumonia.

COVID-19 Pneumonia
We mention "pneumonia" when there is an acute inflammation of the lungs following an infection. Pneumonia is one of the common features in infected patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pneumonia has various clinical and radiological characteristics depending on the stage of the disease. It evolves rapidly, even in asymptomatic patients from local unilateral to diffuse bilateral ground-grass opacities which progress within 1-3 weeks to consolidation or co-exists with. A retrospective study at Wuhan describes radiological findings from 81 patients with COVID-19 pneumonia. The predominant pattern of abnormality observed was bilateral (79%), peripheral (54%), ill-defined (81%) and ground-glass opacification (65%), mainly involving the right lower lobes. [1]

Instructions for new authors: Images, plagiarism, and grammar

Hello awesome authors,

I thought of writing a small guide on things to be mindful when posting images or writing new blogs.

COVID-19: Use of masks

Hi everyone!

We used the WHO guidelines to write the pdf and uploaded it over here

COVID 19: How to limit the spread?

COVID19 spreads primarily through droplets of saliva or discharge from the nose when an infected patient coughs or sneezes (we should so cough or sneeze into a tissue or flexed elbow). The SARS-CoV-2 can also be carried, that's why the handwashing is so important.

We use other means of prevention to limit the spreading, for example, masks and negative pressure rooms. Let us see how it is done.

Wednesday, April 8, 2020

COVID-19: Containment strategy by South Korea

Hello everyone!

In this post, we will discuss the manner with which South Korea managed to contain the virus rather successfully.

So let me help you catch up:-

Club foot: Age-wise Management Flowchart

Club foot is one that resembles a golf club. It is also called Congenital Talipes Equino Varus or CTEV.
Figure 1. Dennis-Brown Splint

Saturday, April 4, 2020

How to cite articles

Hi everyone,

I wanted to write a quick post on how to cite references for Medicowesome Student Guest Authors (MSGAites!). Medicowesome is not a peer-reviewed journal, we are just a website where we post mnemonics, study material, and cool facts. Recently, we've been writing about COVID-19. Because there has been so much fake news and miscommunication about the characteristics of this disease, we decided that all posts related to COVID-19 would have journal articles in literature as references.

There are many styles in which you can format references. You can read more about it in this paper by Kambhampati & Maini, 2019. [1] It is preferred that you use a particular formatting style for all the references in your article. Simply adding links is not preferred because websites change their links all the time. The best way to ensure that your reader finds the article you're referencing is by using a proper reference format. A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article.

COVID-19: SARI treatment facility design

Hi everyone,

One of our guest authors, Tanay Saxena, recently completed a course on Severe Acute Respiratory Infections Treatment Centre. He compiled a very thorough set of notes during the course based on the WHO Severe Acute Respiratory Infections Treatment Centre practical manual that has been developed for the COVID-19 pandemic.

Friday, April 3, 2020

COVID-19: Trained immunity from BCG vaccine

Would BCG vaccination really help in immunizing up against SARS-CoV-2?


Let's dig in. 

BCG is a live-attenuated strain derived from an isolate of Mycobacterium bovis used widely across the world as a vaccine for tuberculosis (TB). But that's not all, BCG vaccination is a potential goldmine against so many diseases.

COVID-19: Hydroxychloroquine mechanism and role in management of SARS-CoV-2 infection

Hello everyone, this post aims to highlight all the important aspects of the recently famous drug hydroxychloroquine in the management of COVID-19.

Mechanism of action: In a study by Aartjan et al, zinc ions (Zn2+) in high intracellular concentrations have been shown to inhibit viral RNA polymerase. However, zinc being an ion cannot enter the cell through the plasma membrane, so it needs ionophores such as pyrithione (PT) to enter the cell, where, in high concentrations, it can efficiently impair the replication of a variety of RNA viruses. Chloroquine can also act as an ionophore that can increase zinc ions transport into the cell.
According to Harrison’s principles of internal medicine, “Infection of tissue culture cells by viruses such as Semliki Forest virus, vesicular stomatitis virus, and certain strains of influenza virus can be prevented by chloroquine, an agent that blocks the function of lysosomes. Chloroquine is a weak base that diffuses into lysosomes and becomes protonated, raiding the pH and ionic strength of the lysosome. When the pH rises, the lysosomal enzymes fail to function. Viruses that require acid pH to fuse with cell membranes can no longer do so in the presence of chloroquine, and the cells are protected from infection.”

Studies revealed that it also has potential broad-spectrum antiviral activities by increasing endosomal pH required for virus/cell fusion, as well as interfering with the glycosylation of cellular receptors of SARS-CoV. The anti-viral and anti-inflammatory activities of chloroquine may account for its potent efficacy in treating patients with COVID-19 pneumonia.

Chloroquine can also prevent orf1ab, ORF3a, and ORF10 from attacking the heme to form the porphyrin and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieving the symptoms of respiratory distress. The infectivity of the nCoV pneumonia was not completely prevented by the drugs, because the binding of E2 glycoprotein and porphyrin was not inhibited. You can read more about this on our previous post on: Coronavirus and hemoglobin https://www.medicowesome.com/2020/04/covid-19-coronavirus-and-hemoglobin.html


Current place in the management of COVID-19


1. In India, ICMR has recommended this drug for prophylaxis to healthcare workers dealing with infected patients and asymptomatic contacts of infected people at a dose of 400 mg per week. Besides AIIMS(New Delhi) has recommended this drug for the treatment of moderate to severe cases who are admitted in the hospital at a dose of 400 mg BD for 1 day which is followed by 200 mg BD for 5 days.

2. Chen et al in an unpublished RCT of 30 patients did not find HCQ provided benefit. The study suggests that if it has an impact, it is likely small. 

3. Gautret et al in a non-RCT of 36 patients suggested that HCQ reduced the duration of viral shedding in infected patients. 6 patients in a post-hoc analysis who received HCQ in combination with azithromycin showed further reduction in the viral carriage. However, this was not statistically significant and groups were not well balanced at baseline. 

4.  Chen et al in a double-blind RCT of 62 patients showed that HCQ can significantly shorten the time to clinical recovery and promote the absorption of pneumonia among patients with COVID-19. However, this study has not yet been certified by peer review. 

5. The Marseille study, an unblinded, non-randomized study of 26 infected patients showed a significant reduction in viral load with HCQ. And the number of positive cases was spectacularly reduced by the combination of HCQ with azithromycin. However, this study was full of flaws, there wasn’t adequate matching between the two groups, there were 6 dropouts who weren’t accounted in the study, patients in the control group didn’t have uniform testing, and the patients in the HCQ group had more severe symptoms and were further along in their clinical course. Apparently, this was the study, based on which President Trump promoted the use of HCQ!

6. The patients taking HCQ should be closely monitored for toxicity, in particular, QT prolongation; especially if it is used with azithromycin. Combining lopinavir/ritonavir with HCQ or chloroquine can cause serious arrhythmias and drug interactions due to the increased QT interval. 


Effect of the pandemic on drug supplies for Rheumatology patients


Hydroxychloroquine has been in use since the 1940s for the treatment of rheumatological conditions such as RA, SLE, and Sjögren’s syndrome. The sudden interest in this drug has led to shortages for patients who rely on it for the treatment of their autoimmune conditions. The Lupus Foundation of America has called on drug manufacturers to increase the production of HCQ, in order to ensure that patients with SLE are still able to access it without much difficulty.

Overall, no agent has proven efficacy for COVID-19. A number of approaches are being investigated based on in vitro or extrapolated evidence, including remdesivir, hydroxychloroquine, chloroquine, interleukin-6 pathway inhibitors, and convalescent plasma. When treatment of COVID-19 is being considered, patients should be referred to a clinical trial whenever possible. A registry of international clinical trials can be found at clinicaltrials.gov. 

Thank you! :) 

-Vinayak

References:
1. CHEN J. ,LIU D. et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci), 2020, 49(1): 0-0.
2. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020. [PMID:32205204]
3. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020. [PMID:32020029]
4. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Zhaowei Chen, Jijia Hu, et al. medRxiv 2020.03.22.20040758; doi: https://doi.org/10.1101/2020.03.22.20040758
5.te Velthuis AJ, et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS
Pathog. 2010 Nov 4;6(11):e1001176. doi: 10.1371/journal.ppat.1001176. PubMed
PMID: 21079686; PubMed Central PMCID: PMC2973827.

COVID-19: Coronavirus and hemoglobin

Hello Awesomites!

Please refer to the diagrams for better understanding.

Why do we have abnormal hemoglobin-related biochemical indices in COVID-19 patients?
Reports demonstrate that the hemoglobin and neutrophil counts decrease in most patients with SARS-CoV-2 infection, and values of serum ferritin, erythrocyte sedimentation rate, C-reactive protein, albumin, and lactate dehydrogenase increase significantly.

What makes hemoglobin an attractive molecule for the coronavirus?
Porphyrins!

Porphyrins in the human body are mostly iron porphyrins i.e heme. And a lot of heme is not free, but bound to hemoglobin. Viruses require porphyrins to survive. Therefore, the novel coronavirus targets hemoglobin, attacks heme, and hunts porphyrins.


Structure of SARS-CoV-2



Image by Upasana Yadav

The possible mechanism is that orf1ab bound to the alpha chain and attacks the beta chain, causing conformational changes in the alpha and beta chains; ORF3 attacks the beta chain and exposes heme. ORF10 then quickly attaches to the beta chain and directly impacts the iron atoms on the heme of the beta chain. The heme is dissociated into porphyrin, and orf1ab finally captures porphyrin. Orf1ab plays a vital role throughout the attack. Attack of oxidized hemoglobin by viral proteins leads to less and less hemoglobin that can carry oxygen. The invasion of viral proteins on deoxidized hemoglobin will cause less and less hemoglobin that can carry carbon dioxide.

This study found that ORF8 and surface glycoprotein had a function to combine with porphyrin to form a complex, while orf1ab, ORF10, ORF3a coordinately attack the heme on the 1-beta chain of hemoglobin to dissociate the iron to form the porphyrin. This mechanism of the virus inhibited the normal metabolic pathway of heme, and made people show symptoms of the disease.

What causes the high infectivity of the novel coronavirus?
Medical workers have detected the novel coronavirus from urine, saliva, feces, and blood. The virus can also live in body fluids. In such media, porphyrin is a prevalent substance. At the beginning of life, virus molecules with porphyrins directly move into the original membrane structure by porphyrin permeability. This study showed that the E2 glycoprotein and Envelope protein of the novel coronavirus could bind well to porphyrins. Therefore, the coronavirus may also directly penetrate the human cell membrane through porphyrin. (Means If the virus can bind with porphyrins, it can enter these secretory cells without ACE2 receptors by using the membrane permeability)

What is the importance of knowing the above information?
The drugs based on this mechanism: Chloroquine and Favipiravir.

The primary function of the Envelope protein is to help the virus enter host cells. The primary role of Favipiravir is to prevent the virus from entering host cells and catching free porphyrins. Favipiravir's ability to improve respiratory distress is lower. Favipiravir can only prevent the binding of Envelope protein and porphyrin.

Chloroquine could prevent orf1ab, ORF3a, and ORF10 from attacking the heme to form the porphyrin and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieve the symptoms of respiratory distress.

The infectivity of the nCoV pneumonia was not completely prevented by the drugs, because the binding of E2 glycoprotein and porphyrin was not inhibited.

Note for Diabetic patients
Diabetic patients and older people have higher glycated hemoglobin. Glycated hemoglobin was reduced by the attack, which made patients' blood sugar unstable. Since the porphyrin complexes of the virus produced in the human body inhibited the heme anabolic pathway.
Written by Upasana Yadav
(Courtesy:-Thank you Ikan for all the help) 

References:
1. Wenzhong, liu; hualan, Li (2020): COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11938173.v5
Link to the article: https://chemrxiv.org/articles/COVID-19_Disease_ORF8_and_Surface_Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_Porphyrin/11938173

COVID-19 and Pregnancy: Should Mothers Be Concerned?

Pregnancy is a special phase in a woman’s life, more so because of the various changes which her body undergoes during these 9 months. Perhaps that is why, the concern about the threat of the novel coronavirus is valid- after all pregnancy is a state of slight immunocompromise, and also because there are two lives at stake. WHO declared the COVID-19 outbreak a pandemic on March 11, 2020. Most countries have taken stringent measures to control the spread of this disease, but do pregnant women need to take more measures? So, avid obstetricians out there, let’s find out deeply about the connection between these two:

WHO’s official stand is that there is no higher risk in pregnancy of severe illness BUT because there are trials underway and due to the bodily changes in pregnancy, one can not know the extent of COVID-19 in these patients. [1] Due to the evolving crisis, we are seeing newer studies every day with new results. A study conducted in early February on 38 pregnant women showed that it did not lead to maternal deaths, and neither were there any confirmed cases of intrauterine transmissions, with rt-PCR being negative in all the neonatal specimens tested, hence leading to the belief that there is no intrauterine or transplacental transmission. [2] Even the CT scans done on pregnant women with COVID-19 positive samples, did not show major changes and recovered from pneumonia adequately. [3]